Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
ACS Infect Dis ; 6(12): 3104-3108, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-972389

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which has affected millions of people worldwide. Considerably lower prevalence and fatality rates resulting from COVID-19 are reported in Africa and Asia than in the industrialized world. In this Viewpoint, we discuss the possibility that this intriguing phenomenon could be, among other factors, due to protective immunity of the oligosaccharide galactose-α-1,3-galactose (α-Gal). The α-Gal immunity induced by gut microbiota that express the same glycan modification may prevent COVID-19 through the activation of different mechanisms involved in SARS-CoV-2 neutralization and the downregulation of the inflammatory response in the lungs of infected patients.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Developing Countries , Immunity, Innate , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Trisaccharides/immunology , ABO Blood-Group System/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/blood , COVID-19/virology , Cross Reactions , Gastrointestinal Microbiome/immunology , Humans , Mice , Prevalence
2.
Vaccine ; 38(42): 6487-6499, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-720733

ABSTRACT

The many carbohydrate chains on Covid-19 coronavirus SARS-CoV-2 and its S-protein form a glycan-shield that masks antigenic peptides and decreases uptake of inactivated virus or S-protein vaccines by APC. Studies on inactivated influenza virus and recombinant gp120 of HIV vaccines indicate that glycoengineering of glycan-shields to present α-gal epitopes (Galα1-3Galß1-4GlcNAc-R) enables harnessing of the natural anti-Gal antibody for amplifying vaccine efficacy, as evaluated in mice producing anti-Gal. The α-gal epitope is the ligand for the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. Upon administration of vaccines presenting α-gal epitopes, anti-Gal binds to these epitopes at the vaccination site and forms immune complexes with the vaccines. These immune complexes are targeted for extensive uptake by APC as a result of binding of the Fc portion of immunocomplexed anti-Gal to Fc receptors on APC. This anti-Gal mediated effective uptake of vaccines by APC results in 10-200-fold higher anti-viral immune response and in 8-fold higher survival rate following challenge with a lethal dose of live influenza virus, than same vaccines lacking α-gal epitopes. It is suggested that glycoengineering of carbohydrate chains on the glycan-shield of inactivated SARS-CoV-2 or on S-protein vaccines, for presenting α-gal epitopes, will have similar amplifying effects on vaccine efficacy. α-Gal epitope synthesis on coronavirus vaccines can be achieved with recombinant α1,3galactosyltransferase, replication of the virus in cells with high α1,3galactosyltransferase activity as a result of stable transfection of cells with several copies of the α1,3galactosyltransferase gene (GGTA1), or by transduction of host cells with replication defective adenovirus containing this gene. In addition, recombinant S-protein presenting multiple α-gal epitopes on the glycan-shield may be produced in glycoengineered yeast or bacteria expression systems containing the corresponding glycosyltransferases. Prospective Covid-19 vaccines presenting α-gal epitopes may provide better protection than vaccines lacking this epitope because of increased uptake by APC.


Subject(s)
Antigens, Viral/genetics , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Trisaccharides/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/biosynthesis , Antigens, Viral/immunology , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/virology , Genetic Engineering , HIV Core Protein p24/chemistry , HIV Core Protein p24/genetics , HIV Core Protein p24/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , Humans , Immunogenicity, Vaccine , Macrophages/drug effects , Macrophages/immunology , Macrophages/virology , Mice , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Trisaccharides/chemistry , Viral Vaccines/administration & dosage , Viral Vaccines/biosynthesis , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL